PHYSICAL PROGRESS REPORT OF SCHEME

ESTIMATION OF ECONOMIC LOSSES IN REAL TERM PER HECTARE BASIS DUE TO FOREST FIRE IN UTTARAKHAND AND MADHYA PRADESH (1/04/2021-30/09/2021)

Submitted by Indian Council of Forestry Research and Education, Dehradun.

(Progress Report of the scheme "Estimation of economic losses in real term per hectare basis due to Forest Fire in Uttarakhand and Madhya Pradesh" funded by National Authority CAMPA)

Table of contents

S. No	Topic / Heading	Page No.
1.	Introduction of the scheme "Estimation of economic losses in real	01
	term per hectare basis due to forest fire in Uttarakhand and Madhya	
	Pradesh"	
2.	Objectives of the Scheme	02
3	Physical Progress of Scheme	02
3a	Coordination review meeting for execution of the project	02-04
3b	Progress made by Partner institutes	05-63
	G.B. Pant National Institute of Himalayan Environment institute	05-10
	(GBPNIHEI),Almora	
	National Institute of Hydrology, Roorkee	10-21
	Wild Life Institute, Dehradun	21-23
	Forest Research Institute, Dehradun	24-27
	Tropical Forest Research Institute, Jabalpur	27-30
4.	Constraints	30
5.	Annexure I	31-32
6.	Annexure II	33-34
7.	Annexure III	35-52
8.	Annexure- IV	53-56
9.	Annexure- V	57-58
10.	Annexure- VI	59-63

1. Introduction:

Based on the recommendations of the Parliamentary Standing Committee on Science & Technology, Environment & Forests to Uttarakhand (June 2016) Ministry of Environment, Forest & Climate Change (MoEF&CC), Govt. of India (GoI) vide letter no. F.No.7-2/2016-FPD dated 11th March, 2017 requested Indian Council of Forestry Research and Education (ICFRE), Dehradun to submit a proposal for undertaking the study on Estimation of economic losses in real term per hectare basis due to forest fire. Accordingly, ICFRE proposed a pilot study entitled "Estimation of economic losses in real term per hectare basis due to Forest Fire in Uttarakhand and Madhya Pradesh" for funding from National Authority CAMPA towards addressing the requirements of estimation of total economic loss in real terms of monetary value on per hectare basis for the study states of Uttarakhand and Madhya Pradesh. Through the study a framework / approach /methods /tools and techniques will be provided to estimate tangible and intangible losses due to forest fire on per hectare basis which may be used in other similar situations. The pilot study being multidisciplinary in nature will be conducted by ICFRE through its institutes at Dehradun (Forest Research Institute) and Jabalpur (Tropical Forest Research Institute) in association with partner institutions mentioned below:-

- i. Forest Survey of India (FSI), Dehradun
- ii. Wild life Institute (WII) ,Dehradun
- iii. National Institute of Hydrology (NIH)
- iv. G.B Pant National Institute of Himalayan Environment & Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand (GBPIHESD)

The total outlay of scheme is Rs 378.840 lakhs. The scheme was sanctioned through Order No. 13-35/2019-CAMPA, dated 28th January, 2020 of National Authority Campa, MoEF& CC, New Delhi for recurring expenditure and vide Order No. 13-35/2019-CAMPA, dated 28th January, 2020 of National Authority Campa, MoEF&CC, New Delhi for Non-Recurring expenditure. As per approved scheme 50% of the funds were received on 26th February 2020. The scheme is for 24 months. As per the proposal, the date of initiation of the Project will be from the date of finalization of polygons for the study by FSI. The funds lying balance on 01.04.2020 were revalidated for 2020-21 through letter dated 26th August, 2020 vide File No. 13-35,2019-NA.

2. Objectives of the Scheme are as under:

- a) To quantify the forest loss in terms of total economic value i.e., monetary value on per hectare basis for the forest types in the States of Uttarakhand and Madhya Pradesh.
- b) Burnt area assessment and severity classification due to forest fire for the respective states.
- c) Economic loss assessment of terrestrial flora due to forest fire on per hectare basis for the respective states
- d) Economic loss assessment of faunal diversity due to forest fire on per hectare basis for the respective states
- e) Economic loss assessment of hydrological changes due to forest fire on per hectare basis for the respective states
- f) Economic loss assessment of provisioning services and cultural value of forest produce loss due to forest fire on per hectare basis for specific forest types and extrapolated for the respective states.

3. Physical Progress of Scheme

3a: Coordination review meeting for execution of the project

i. Inception meeting of all the project partners (Forest Survey of India-Dehradun, Wild Life Institute-Dehradun, National Institute of Hydrology-Roorkee, GBPNIHESD Almora, ICFRE Dehradun, Forest Research Institute Dehradun and Tropical Forest Research Institute- Jabalpur) and Nodal Officers of State Forest Departments (Uttarakhand & Madhya Pradesh) was organised at ICFRE, Head Quarter, Dehradun on January 22, 2020 to discuss in detail the methodology and structure of the project for the smooth execution of it. It was discussed at length and all project partners agreed to conduct the study on the burnt polygons of forest areas burnt during fire season 2019 in different forest types as per the parameters identified in the approved project. Recruitment of staff was initiated by partners. Literature survey was under taken and consultation with experts was held in social distancing mode to decide methodology. Tender process for purchases was initiated by all the project partners in their respective institutes as per the project schedule.

- ii. The 2nd Coordination meeting was held on 12th May 2020 after unlock 1.0 of COVID- 19 to expedite the process of finalization of site of burnt area for the study. As discussed in 1st and 2nd coordination meeting, FSI submitted the Interim Report on findings of Burnt Scar Assessment of Uttarakhand on 9 June 2020. The minimum mappable unit for the study was 3 hectares. The burnt scars were classified into Severely Burnt, Moderately Burnt and Low Burnt severity classes based on the reflectance of a pixel of the satellite data. Based on the analysis of satellite data, a total of 4,897 fire polygons of different sizes with minimum area of 3 ha were identified in Uttarakhand. The 3rd coordination meeting was held on 29 June 2020. The received report on burnt scar polygons as shape files for fire season 2019 and also protocols to open the shape files was circulated amongst the partners of the project. The burnt scar polygon having minimum area of 3 hectare with following attributes have been provided in shape file, Format (.shp).
 - a) Polygon ID (ID. No)
 - b) Severity classes burnt-severe, moderate and low.
 - c) Burnt scar in hectares
 - d) Forest range information-boundaries of 18 relevant forest ranges in Uttarakhand
 - e) Forest cover/density classes from dense, moderately dense, open, scrub
 - f) Forest type group-1-total 9 forest types groups in Uttarakhand
 - g) Altitude zones ranging from 0-900 meters to above 3600 metres
 - h) Slope classes ranging from 0-3° to above 36°, Aspect classes-North, South, East, West
- iii. In fourth coordination meeting held through video-conferencing (VC) on 24 September 2020, for reviewing progress and to discuss amongst project partners to decide a coherent methodology to work on the selected Burnt and Unburnt Polygons of Uttarakahnd and Madhya Pradesh required to conduct further studies as per the requirement of the approved project it was found that that based on the forest fire year 2019, details of 4897 polygons of Uttarakhand was received from Forest Survey of India, Dehradun. Out of these 4897 polygons identified, tentatively 164 selected Burnt Scar Polygons with minimum area of 3 ha belonging to different forest types, slope, aspect, severity of burnt areas etc were

short listed. However FSI Dehradun requested SFD Uttarakhand to validate 4897 polygons along with 164 shortlisted polygons. Uttarakahnd State Forest Department and FSI validated 289 polygons of Uttarakhand. The statistical expert from ICFRE identified 42 forest fire polygons (moderately burnt =32, low burnt =10) for the study in Uttarakhand which stands communicated to all the project partners. Also the permission received from PCCF & HoFF Uttarakhand has also been communicated to all the PIs of the Project.

- iv. FSI submitted information regarding Burnt Scar Polygons' for State of Madhya Pradesh to ICFRE. Total 17288 fire polygons of different sizes with minimum area of 3 ha have been listed in Madhya Pradesh. The burnt scar polygons belong to Severely Burnt, Moderately Burnt and Low Burnt classes. Out of 17288 fire polygons 178 polygons were finalized as per statistical requirements and keeping in view different parameters like forest types, slope, aspect etc. Madhya Pradesh State Forest Department and FSI validated 228 polygons. The statistical expert from ICFRE identified total 49 fire affected polygons (severe burnt = 5, moderately burnt =24, low burnt =20) for M.P. These details of polygons have been communicated to all the partners. Also, the permission received from PCCF & HoFF during 2nd week of December, 2020, has been forward to all the PIs of the project.
- v. In fifth coordination meeting held through video conferencing (VC) on 21 May 2021, to review the progress so far made by all the Partner Institutes for last financial year ending 31st March, 2021 and submission of Utilization Certificates and cumulative physical progress reports (along with photographs and data) by all the Partner Institutes for last financial year i.e., 01st April, 2020 to 31st March, 2021. All project partners presented their work. The progress made by all the partners for duration 1/04/2020 to 31/03.2021 has been submitted to MoEF&CC. The progress made by all project partners for duration 01/04/2021 to 30/09/2021 is detailed below:

3b. Progress made by Partner institutes:

✤ G.B. Pant National Institute of Himalayan Environment Institute (GBPNIHEI)

Objective: Economic loss assessment of provisioning services and cultural value of forest produce loss due to forest fire on per hectare basis for specific forest types and extrapolated for the respective states.

This report is a follow-up to the quarterly report i.e., March-June, 2021 of this project. Altogether, during the six months (April-September, 2021) period a total of 23 and 22 polygons were surveyed in burnt and un-burnt forests in the identified polygons of forest fire of 2019 in Uttarakhand and Madhya Pradesh, respectively. Field survey teams are still in the field and taking data of remaining polygons. Summary of major parameters of data collected during April-September, 2021 forest fire affected forests of Uttarakhand and Madhya Pradesh are as follows-

- Among the herb layer biomass of 54 species in Uttarakhand and 49 species in Madhya Pradesh was measured found in the studied polygons. Similarly, for shrubs, biomass was estimated for 28 species in Uttarakhand and 22 species in Madhya Pradesh.
- 2. Among the tree layer fruit yield of NTFPs, 23 and 12 species in Uttarakhand and Madhya Pradesh, respectively was estimated (data under compilation).
- 3. In the MAPs species, 58 species in Uttarakhand and 41 species of MAPs were recorded and biomass of tradable part of these species were separately estimated (data under compilation).
- Identification of the plant species collected during the reporting period in Uttarakhand and Madhya Pradesh with the help of experts of TFRI, Jabalpur (Dr. Jyoti Desai & Dr. Sanjay Kumar) and Dr. Ravi Upadhyay, SBS Degree College, Pipariya (M.P.).
- 5. During the reporting period (post-monsoon), we have recorded 11 (herb and shrub) and 13 (herb and shrub) new species (other than species recorded in pre-monsoon survey) in Uttarakhand and Madhya Pradesh, respectively.
- 6. Fuelwood estimation was done (and continued) in the 45 surveyed polygons for measuring dead standing trees/stumps both in Uttarakhand and Madhya Pradesh.
- 7. Review of literature on phytosociology, taxonomical parameters and economic valuation of NTFPs, MAPs etc. for both the Uttarakhand and Madhya Pradesh was carried out (and continued).

- 8. Visit to different agencies such as; Bhesaj Sangh, Dehradun Uttarakhand Van Vikas Nigam, Dehradun (Uttarakhand Forest Development Cooperation), Uttarakhand Forest Department, Dehradun, Forest Research Institute, Dehradun, and Wildlife Institute of India, Dehradun were made for collecting market rate list of various economic/ important NTFPs species.
- 9. During the reporting period a total of 690 and 660 quadrats for herb, 460 and 440 for shrubs, were laid in Uttarakhand and Madhya Pradesh, respectively.
- Stakeholder's consultations / meetings were held with the local people and other stakeholders to estimate the monetary loss due to forest fire of fodder, fuel wood, NTFPs and MAPs etc. was carried during the reporting period.

Parameter wise progress of the work during the reporting period:

1. Biomass estimation of the useful/tradable part of the species-

A reconnaissance survey of the polygons was carried out before actual field work during late to post-monsoon season in 2021. Based on the survey, on the MAPs and wild edible/fruit yielding plants across the polygons thirty quadrats of 1x1m (for herbs), twenty quadrats of 5x5m (for shrubs) and ten quadrats of 10x10m (for trees) were laid down randomly to evaluate biomass (useful/ tradable part) and plant density per hectare basis. The categorization of bushes of NTFP value into small, medium and large was based on the average number of shoots per plant. For each species, mean fruit yield per plant was determined from 10 randomly selected bushes and trees of different size. In the case of herb species, we dig out 10 randomly selected individuals of different size of only those species which are used for their belowground parts and fresh weight measured at the field and dry weight at the lab after oven dry (70°C for 24 hrs). So far, we have collected 54 species of herbs (Annexure – I) and 28 shrubs (Annexure II) for estimation of total biomass (out of which 53 species were having MAPs properties and 29 wild edibles) in Uttarakhand.

Fig. 1 Step-wise method for biomass estimation of the useful/tradable part of the species (A) categorization of bushes of different size; (B) measurement of fresh weight of the useful/tradable part at the field; (C) preparing species for oven dry (D) oven dry of species at lab

Similarly, in M.P. we estimated total biomass of 49 herbs and 22 shrubs species (in which 53 species are of MAPs properties and 18 wild edible). However, our filed work and literature survey is still continuing to estimate the biomass/ density/ yield for those species which are not yet matured or not in fruiting stage so far.

Fig. 2 Some plants of economic values (A) Flower of *Desmodium trifolium* (B) Leaves of *Bergenia ciliata* (C)
Fruit of *Cassia fistula* (D) Cone of *Pinus roxburghii* (E) Fruits of *Bahunia variegata* (E) Fruits of *Pyracantha crenulata* (F) Fruits of *Rubus ellipticus* (G) Fruits of *Ficus roxburghii*

2. Identification of unidentified plant species of M.P. polygons-

In the present field work (late monsoon to post-monsoon period) across the 22 polygons studied till now in Madhya Pradesh, a total of 62 plant species were recorded. However, 17 plant species are yet to be identified with the help of experts in M.P. We are sharing plant specimens to these experts along with their photos taken in the field and maintaining the herbarium sheet. During the reporting period 17 new species have been identified by the taxonomists which are different from the species recorded in pre-monsoon survey in 2020-21. The exact numbers of species will be provided in the FTR after conducting complete field work/ identification.

3. Estimation of volume of the dead standing tree/stumps-

For estimation of standing dead wood volume within the burnt polygon ten quadrats of 10m x 10m size were randomly laid in the polygon so that it represents the entire vegetation type. Standing dead wood were measured for diameter and height/length in the corresponding quadrat. Diameter was measured at three points across the stump (diameter at base; diameter at breast height, diameter at top) and the dead standing tree charred due to forest fire. Later, based on fire damage percentage and 3rd and 4th grades of the dead standing wood was classified into fuelwood/timber use.

Fig. 3 Estimation of volume of the dead standing tree/stumps: (A) Measuring of dead standing stump; (B) Pine tree affected by fire: (C) Burnt stump of pine.

4. Field workshop to standardize the methods and techniques of loss estimation with forest officials-

A two-days field workshop conducted under the supervision of Dr. GCS Negi, PI of the project at polygon ID 2201, Ganiadeoli Beat, Ranikhet Range with all the project staff to discuss various issues those are

Fig. 4 Field workshop/ demonstration (A) Quadrat; (B) Dr. GCS Negi, PI of the project, demonstrating methods for field work and comparing pre- and post-monsoon data of the polygon 2201, Ganiadeoli beat, Ranikhet range

encountered during the field work. The main aim of the workshop was to demonstrate the methods for post monsoon data collection, and to compare pre-and-post monsoon data of polygon. After the completion of field workshop, a stakeholder's consultation meeting was carried out at Forest Research Centre, Ranikhet to assess the economic values of the forest products i.e., MAPs, wild edibles, fodder, and other NTFPs. The meeting started with a short presentation of the project objective and methodology by the PI of the project

and project RA. In the following discussion all the officials and staff of the Forest Research Centre participated.

5. Estimation of the herbaceous biomass-

Herbs biomass was estimated using total harvest method by randomly placing 30 quadrats (1m x 1m) distributed across the ten quadrats of 10x10 m each representing the entire vegetation of both burnt polygons and adjacent unburnt forest. Before placing the quadrate the entire polygons were trekked to identify the suitable locations for intensive study. Herb biomass was harvested using a scissor, weighed in an electronic balance and brought to laboratory for dry weight estimation.

Fig. 5 Stepwise methodology for estimation of the herbaceous biomass: (A), (B) randomly laid quadrat; (C) harvesting vegetation; (D) harvested quadrat; (E) weighing the herbaceous biomass (fresh weight) **Future plan of action-**

The field survey is already in progress in burnt and un-burnt forests in Uttarakhand and Madhya Pradesh. The details of the work elements are as follows:

- 1. Detailed survey in the field will focus on the individual biomass of MAPs species
- 2. Biomass estimation (fresh weight at field) of plant parts/ whole plant of economic value of MAPs species reported in 2020-21 and additional species
- 3. Estimation of yield of wild edible individual plant species
- 4. Biomass of individual herb biomass

6.

- 5. Biomass of individual shrub biomass
- 6. Volume of dead standing trees/ stumps
- 7. Transect walk in the polygon and listing/inventory of species, and
- 8. Stakeholder's consultations / meetings with the local people nearby the polygon

9. Literature survey and consultations with experts / stakeholders for estimation of loss due to forest fire.

* National Institute of Hydrology (NIH), Roorkee

Objective: Economic loss assessment of hydrological changes due to forest fire on per hectare basis for the respective states

Study Area

The study was proposed to be carried out in plots of 1 ha size in the states of Uttarakhand and Madhya Pradesh. Two neighbouring plots (one burnt and another unburnt) of 1 ha size would be selected; one of these two plots in each of the finally selected burnt forest polygons i.e. 42 Nos. in Uttarakhand and 49 Nos. in Madhya Pradesh and one nearby unburnt plot in the similar forest type in the vicinity. The location and details of these sites have been given in Tables 1 and 2.

Table 1: Finally selected 42 Burnt plots in the forest areas of Uttarakhand

		Burnt Polygons			
SN	Forest type	Severe	Moderate	Low	
1.	Group 3- Tropical Moist Deciduous Forests	Nil	4	2	
2.	Group 5- Tropical Dry Deciduous Forests	Nil	Nil	2	
3.	Group 9 -Subtropical Pine Forests	Nil	18	2	
4.	Group 12- Himalayan Moist Temperate Forests	Nil	9	2	
5.	Group- TOF/Plantation	Nil	1	2	
	Total	Nil	32	10	

SN	Forest type	Burnt Polygons			
		Severe	Moderate	Low	
1.	Group 3- Tropical Moist Deciduous Forests	2	4	8	
2.	Group 5- Tropical Dry Deciduous Forests	3	20	12	
3.	Group 9 - Subtropical Pine Forests	Nil	Nil	Nil	
4.	Group 12- Himalayan Moist	Nil	Nil	Nil	
	TemperateForests				
5.	Group- TOF/Plantation	Nil	Nil	Nil	
	Total	5	24	20	

Fig. 6 Finally selected 42 Burnt plots in the forest areas of Uttarakhand

Fig. 7 Finally selected 49 Burnt plots in the forest areas of Madhya Pradesh

Methodology

Part A. Estimation of changes in hydrological response due to forest fire

A paired-plot approach would be adopted in the study that involves use of two neighbouring plots (one burnt and another un-burnt) where precipitation inputs, pre-burnt vegetation characteristics, soil and geological conditions, and other variables are similar/ identical.

Field and Laboratory Investigations:

The burnt and un-burnt plots shall serve as treated and control plots for estimating the changes in hydrological variables. Extensive field and laboratory investigations would be carried out in experimental and control plots in all the forest types and in both the states. Double Ring Infiltrometer Tests and Guelph Permeameter Tests will be conducted to determine the infiltration capacity and hydraulic conductivity of the burnt and unburnt plots. The soil samples will be collected from the burnt and unburnt plots and analyzed in the laboratory for determination of soil texture, soil organic matter, soil porosity, soil-water retention characteristics, soil permeability etc. The field investigations would also be carried out for determination of vegetation cover characteristics and hydrologic condition of the cover.

Fig. 8 Field investigations at Rajaji National Park

Assessment of Hydrological Response:

The gridded historical precipitation data, AET data and soil maps will be obtained from various sources. Direct runoff from the experimental plots will be estimated by SCS Curve Number (SCS-CN) Method.

Fig. 9 Flowchart of runoff estimation procedure using SCS-CN method

The curve numbers for AMC-II condition are derived from NEH-4 tables and these curve numbers are used for estimation of runoff using the following equations:

$$Q = \frac{(P - 0.05S)^2}{P + 0.95S} \qquad S = \frac{25400}{CN} - 254$$

Further, these curve numbers are converted for AMC-I or AMC-III using the following equations:

Model	AMCI	AMC III
<u>Sobhani</u> (1975)	$CN_{I} = \frac{CN_{II}}{2.334 - 0.01334CN_{II}}$	$CN_{III} = \frac{CN_{II}}{0.4036 + 0.005964CN_{II}}$
Hawkins et al. (1985)	$CN_{I} = \frac{CN_{II}}{2.281 - 0.01281CN_{II}}$	$CN_{III} = \frac{CN_{II}}{0.427 + 0.00573CN_{II}}$
Chow et al. (1988)	$CN_{I} = \frac{4.2CN_{II}}{10 - 0.058CN_{II}}$	$\mathrm{CN}_{\mathrm{III}} = \frac{23\mathrm{CN}_{\mathrm{II}}}{10 + 0.13\mathrm{CN}_{\mathrm{II}}}$
Neitsch et al. (2002)	$CN_{II} = CN_{II} - \frac{20(100 - CN_{II})}{\{100 - CN_{II} + exp[2.533 - 0.0636(100 - CN_{II})]\}}$	СŊ _{III} = CŊ _I exp{0.00673(100-CŊ ₂)}
Mishra et al. (2008)	$CN_{I} = CN_{II} - \frac{20(100 - CN_{II})}{2.274 - 0.012754CN_{II}}$	$CN_{III} = \frac{CN_{II}}{0.430 + 0.0057CN_{II}}$

Further, for assessing the hydrological response, Thornthwaite Water Balance Method

will be used incorporating the precipitation data, AET data, SCS-CN estimated runoff and the hydrological parameters derived from the field and lab investigations. The difference in hydrological response of the two plots would be ascribed to the changes due to fire.

Assessment of Soil Erosion Patterns:

Modified Universal Soil Loss Equation (MUSLE) will be employed to assess the sediment yield patterns as follows:

$S = 11.8 (Q^* qp)^{0.56} K^* LS * C *P$

where, S is the single storm sediment yield (tons), Q is the runoff volume (m^3) , qp is the peak discharge. The peak discharge may be estimated using the following equation:

q p= 0.278*A*d / Tp

where, A is area (km²); d is runoff depth (mm); Tp is the rise time of the hydrograph (h) (time from the beginning of runoff to the time of peak runoff.

The main difference compared to the USLE is the replacement of the rainfall factor with a direct estimate of surface runoff and peak runoff rate. This method requires rainfall data, soil parameters, slope, vegetation cover, and land management practices. Due to forest fire, there will be change in soil erodibility and vegetation cover which will be reflected in the soil erosion patterns.

Part B. Estimation of Economic Losses due to change in hydrological response induced by forest fires

The study will evaluate economic loss based on the effect of forest fire on the hydrological behaviour of experimental plots through conducting primary surveys of selected sites under burnt and un-burnt categories specific to the study area. Capture the socio-economic and environmental loss due to change in hydrological behaviour caused by forest fire. The broad regulating and supporting ecosystem services of forest like water cycle and its related biophysical attributes like interception, infiltration, water holding, surface runoff, soil erosion, sedimentation, river flow, downstream water quality and impact on aquatic lives will be focused and their impacts on ground and surface water causing loss or gain will be analyzed and estimated. The loss or gain will be analyzed in terms of use (direct and indirect) and non-use values using the methodology of TEEB India Initiative including the socio-economic and environmental losses/gains due to hydrological change.

Multi-stage random sampling technique will be adopted. The sample households will be chosen in the various selected distance ranges (to be specified depending on the experimental area of the forest). The semi-structured questionnaire will be used to collect the primary data. A survey will be conducted to test the questionnaire. Focused group discussions (FGDs) will also be conducted to get the qualitative data from the stakeholders. The questionnaire will cover broad aspects of socio-economic and demographic characteristics of the households and their access to environmental goods to investigate the various impacts and effects of wildfire on their lives, livelihood, occupation, assets, health, and different natural sources like water, food, soil/ agricultural land, homestead trees. To understand the differences in socioeconomic characteristics of stakeholders, several variables will be considered such as family-size and its composition; level of education; occupation; landholding pattern; livestock-ownership pattern; ownership of agricultural machinery and implements; exposure to watershed and wild fire and distance; access to infrastructure and natural resources; etc. In addition to use of statistical tools and techniques, different GIS techniques shall be used. The analysis will be made by focusing on its impact on different systems and subsystems like land/soil/agriculture, forest, water, and their services. Different market and non-market valuation techniques will be applied to assess themonetary value of economic losses.

Current Progress Status of The Project

The field investigations (including double ring infiltrometer tests and Guelph Permeameter Tests and soil sample collection for texture, soil moisture retention, organic matter content etc.) at the burnt and unburnt plots are going on. Till now, we have completed the field investigations at 14 burnt polygons in Uttarakhand and 24 burnt polygons in Madhya Pradesh along with equal number of neighbouring unburnt plots. The laboratory investigations for the analysis of collected soil samples are also going on in parallel.

The required gridded precipitation data, Actual Evapotranspiration (AET) data, National Bureau of Soil Survey and Land Use Planning (NBSS&LUP) soil maps and Leaf Area Index for both theburnt and unburnt plots in both the states have been obtained.

The development of various maps required for the assessment of change in hydrologic responseas well as for assessment of soil erosion patterns is in progress.

One component of the study titled "Estimation of economic loss due to change in hydrologic variables caused by forest fires in Uttarakhand and Madhya Pradesh" has been awarded to the Department of Humanities and Social Sciences, IIT Roorkee. Their assessment of economic loss will be based on surveys and the inputs on hydrologic response provided by NIH. They have finalized the questionnaire for the survey and started the field surveys.

Field Investigations in Madhya Pradesh

The 49 burnt sites in forests of Madhya Pradesh comprise of 20 low burnt, 24 moderately burnt and 5 severely burnt sites. The burnt sites are distributed in the various regions of Madhya Pradesh and field experiments along with soil sampling cannot be performed at one go for all the49 sites. Therefore, the experiments have been planned in four phases to cover these 49 test sites spread all over Madhya Pradesh. 24 burnt sites were selected to be covered in the first andsecond phase of the field visits to cover the burnt sites located in the districts of Hoshangabad, Narsinghpur, Katni, Satna, Sidhi, Dindori, and Balaghat. The experiments have been performed at these 24 burnt sites and the adjoining 24 unburnt/control sites so that the changes that might have resulted due to forest fires can be evaluated.

Fig. 10 Completed 24 burnt and unburnt (control) sites in forests of Madhya Pradesh

Field experiments were carried out to determine the saturated hydraulic conductivity and infiltration capacity at the selected 24 burnt forest sites and adjoining unburnt (control) sites. The cumulative infiltration that took place during the test duration of 5 hours and 50 minutes was also computed from the analysis. The results of the infiltration tests and Guelph Permeameter tests for the burnt and unburnt forest sites are summarized in Table 3 whereas Table 4 shows the test results at the adjoining unburnt (control) test sites. At few sites, the infiltration tests could not be conducted due to topographical constraints and trekking time limitations within the forests to reach some of the test sites.

 Table 3: Saturated hydraulic conductivity, Infiltration capacity and Cumulative infiltrationat burnt forest sites

SN	Forest Division	Forest Range	Burnt forestsites (Beat)	Comp .No.	Fire Severit y	Saturated hydraulic conductivit y(cm/sec)	Infiltratio nrate (cm/hr)
1	Hoshangabad	Bankhedi	Dolni	321	Moderat	2.952	3.8
					e		
2	Narsinghpur	Narsinghp	Usri	136	Moderat	1.008	1.1
		ur			e		
3	Narsinghpur	Narsinghp	Jatlapur	150	Moderat	5.436	5.1

		ur			e		
4	Narsinghpur	Narsinghp	Kislai	155	Moderat	5.868	-
	• •	ur			e		
5	Narsinghpur	Gotegaon	Dungariya	39	Low	2.952	2.9
6	South Panna	Kalda	Kutmi khurd	851	Moderate	0.900	1.9
7	Satna	Nagod	Surdaha	321	Low	0.468	1
8	Satna	Nagod	Jhingodar	330	Low	1.332	-
9	Satna	Nogod	Shyam Nagar	294	Low	2.340	-
10	Sidhi	Sidhi	Sidhi	1007	Moderate	1.944	1.8
11	Dindori	Shahpur	Surkhi	120	Low	2.916	-
12	Dindori	Shahpur	Surkhi	120	Moderate	3.384	-
13	Satna	Nagod	Khagaha	293	Low	2.340	-
14	South Panna	Kalda	Jursinha	817	Moderate	-	-
15	South Balaghat	Balaghat	Bori	667	Low	0.049	1.6
16	South Balaghat	Loungur	Varudgota	5	Severe	1.065	4
17	North Balaghat	South	Dongarbo	1373	Severe	0.324	0.9
		Lamta	di North				
18	North Balaghat	South	Manpur	1356	Low	0.294	5.2
		Lamta					
19	North Balaghat	South	Mohgaon	1314	Low	0.292	3.3
		Lamta					
20	North Balaghat	North	Basegaon	1195	Moderate	0.006	3.9
		Lamta					
21	North Balaghat	North	Kumjhar	1211	Moderate	0.607	4.4
		Lamta					
22	North Balaghat	North	Basegaon	1210	Low	0.457	4.8
		Lamta					
23	South Balaghat	Lougur	Khursudh	56	Low	0.144	2.7
24	Kanha	Mukki	Samnapur	195	Low	0.342	1
	NationalPark						
	(Core)						

Table 4: Saturated hydraulic conductivity, Infiltration capacity and Cumulative infiltrationat

Unburnt (control) sites

SN	Forest Division	Fores t Rang e	Burnt forestsites (Beat)	Comp .No.	Fire Severit y	Saturated hydraulic conductivit y(cm/sec)	Infiltratio nrate (cm/hr)
1	Hoshangabad	Bankhedi	Dolni	321	Moderate	3.636	4.7
2	Narsinghpur	Narsinghpur	Usri	136	Moderate	2.052	1.7
3	Narsinghpur	Narsinghpur	Jatlapur	150	Moderate	11.052	6.9
4	Narsinghpur	Narsinghpur	Kislai	155	Moderate	7.956	-
5	Narsinghpur	Gotegaon	Dungariya	39	Low	3.132	3.2
6	South Panna	Kalda	Kutmi khurd	851	Moderate	2.088	2.8
7	Satna	Nagod	Surdaha	321	Low	1.764	1.2
8	Satna	Nagod	Jhingodar	330	Low	5.796	-
9	Satna	Nogod	Shyam Nagar	294	Low	2.952	-
10	Sidhi	Sidhi	Sidhi	1007	Moderate	2.700	2.4

11	Dindori	Shahpur	Surkhi	120	Low	6.264	-
12	Dindori	Shahpur	Surkhi	120	Moderate	6.264	-
13	Satna	Nagod	Khagaha	293	Low	3.240	-
14	South Panna	Kalda	Jursinha	817	Moderate	-	-
15	South Balaghat	Balaghat	Bori	667	Low	0.370	4
16	South Balaghat	Loungur	Varudgota	5	Severe	0.454	5.4
17	North Balaghat	South	Dongarbodi	1373	Severe	0.068	3.7
		Lamta	North				
18	North Balaghat	South	Manpur	1356	Low	0.008	5.8
		Lamta					
19	North Balaghat	South	Mohgaon	1314	Low	0.144	5.8
		Lamta					
20	North Balaghat	North	Basegaon	1195	Moderate	0.538	5.6
		Lamta					
21	North Balaghat	North	Kumjhar	1211	Moderate	0.023	5.6
		Lamta					
22	North Balaghat	North	Basegaon	1210	Low	0.363	5.7
		Lamta					
23	South Balaghat	Lougur	Khursudh	56	Low	0.063	4.2
24	Kanha National	Mukki	Samnapur	195	Low	0.098	5.7
	Park (Core)						

Field Investigations in Uttarakhand

The 42 burnt sites in the forest areas of Uttarakhand comprise of 10 low burnt, 32 moderately burnt sites distributed across five forest types. The burnt sites are distributed in the various regions of Uttarakhand, therefore, the experiments have been planned to cover the sitesaccording to the forest divisions. The field investigations were started during last week of January. Considering the harsh winter climate at the hilly sites, it was planned to carry out the field investigations starting from the plain areas of Uttarakhand and further approaching towards the hilly sites. The experiments have been performed at the 14 burnt sites and the adjoining 14 unburnt/control sites so that the changes that might have resulted due to forest fires can be evaluated.

Fig. 11 Completed 14 burnt and unburnt (control) sites in forests of Uttarakhand

Field experiments were carried out to determine the saturated hydraulic conductivity and infiltration capacity at the selected 14 burnt forest sites and at equal number of adjoining unburnt(control) sites. The results of the infiltration tests and Guelph Permeameter tests for the burnt and unburnt forest sites are summarized in Table 5 whereas Table 6 shows the test results at the adjoining unburnt (control) sites.

SN	Division	Range	Beat	Comp. No.	Hydraulic Conductivity	Infiltratio nRate
					(KIS) (CIII/III)	(cm/nr)
1	Raja Ji National	Haridwar	Ranipur East	0	0.997	9.546
	Park					
2	Raja Ji National	Haridwar	Kharkhari North	0	2.303	1.069
	Park					
3	Haridwar	Chiriyapur	Kotawali	10	0.250	0.7
4	Terai East	Kilpura	West Kilpura - 1	51	0.979	1.82
5	Terai East	Kishanpur	Kishanpur South	8	0.409	2.959
6	Tarai Central	Haldwani	Tanda Center	109	0.064	1.018
7	Tarai West	South	Tumaria	39	1.754	2.036
		Jaspur				
8	Haldwani	Danda	North Lowaranala	0	_	19.855

Table 5: Saturated hydraulic conductivity, Infiltration capacity and Cumulative infiltrationat burnt forest sites

9	Haldwani	Danda	Durgapipal	4	0.054	2.291
10	Haldwani	Jaulasal	Hatgarh	9	-	6.491
11	Haldwani	Nandhaur	Ratarao	5	-	26.727

 Table 6: Saturated hydraulic conductivity, Infiltration capacity and Cumulative infiltrationat Unburnt (control) sites

				Comp. No.	Hydraulic Conductivity	Infiltratio nRate
SN	Division	Range	Beat		(Kfs) (cm/hr)	(cm/hr)
1	Raja Ji National Park	Haridwar	Ranipur East	0	1.965	29.591
2	Raja Ji National Park	Haridwar	Kharkhari North	0	1.479	7.255
3	Haridwar	Chiriyapur	Kotawali	10	0.827	0.682
4	Terai East	Kilpura	West Kilpura - 1	51	3.354	2.036
5	Terai East	Kishanpur	Kishanpur South	8	0.013	5.727
6	Tarai Central	Haldwani	Tanda Center	109	0.556	0.509
7	Tarai West	South Jaspur	Tumaria	39	3.529	2.291
8	Haldwani	Danda	North Lowaranala	0	0.076	91.636
9	Haldwani	Danda	Durgapipal	4	-	14.891
10	Haldwani	Jaulasal	Hatgarh	8	-	-
11	Haldwani	Nandhaur	Ratarao	4	-	26.727

Inferences Drawn from the Field Investigations

For most of the sites, the infiltration capacity and saturated hydraulic conductivity at unburnt (control) sites have been found to be more than that at the burnt forest sites. The reasonfor the same may be attributed to the repulsive behaviour due to the ashes of the burnt trees getting accumulated over the soil surface and soil pores. The deposition of the ash as well as its downward movement in the subsequent monsoon season causes coagulation and formation of soil aggregates that generally acts as an impervious medium like a cement layer and thereby reducing the infiltration rate and movement of water within the soil matrix. The Figures showing the infiltration capacity and cumulative infiltration for burnt and adjoining unburnt (control) sites in forests of Madhya Pradesh and Uttarakhand are given in (Annexure III).

✤ Wild life Institute (WII), Dehradun

Objective: Economic loss assessment of faunal diversity due to forest fire on per hectare basis for the respective states.

The encounter rates in the post-fire season and relative abundance index has been analysed. By comparing the encounter rates of mammal species, it was found that the encounter rates of Himalayan Goral (1.25 to 1.55 sign per km) and Indian Leopard (1.25 to 1.39 per km) has increased, while the encounter rates of other species Indian Crested porcupine (0.85 to 0.55 sign per km), Wild pig (0.60 to 0.26 sign per km), Barking deer (0.88 to 0.24 sign per km) and Sambar (0.17 to 0.06 sign per km) reduced, while encounter rates were same for Golden Jackal (0.08 sign per km).

Fig. 12 Bar graph showing encounter rates of indirect signs of mammal's in Pre-fire season (above) and in post fire season (bottom)

<u>Relative Abundance Index</u>: In the study area, a total 18 camera traps were installed and for the analysis of relative abundance index, only the photographs of wild animals were used. The trend of relative abundance index of mammals was in the following order in pre-fire season:

Barking Deer > Himalayan Goral > Indian Crested Porcupine > Masked Palm Civet > Indian Leopard > Wild pig > Sambar > Red Fox > Grey Langur The trend of relative abundance index of mammals in post-fire season is in the following order:

Barking Deer > Indian Crested Porcupine > Indian Leopard > Wild pig > Himalayan Goral > Red Fox > Masked Palm Civet > Leopard cat > Grey Langur > Rhesus macaque

Fig. 13 Bar graph showing Relative Abundance Index (RAI) of mammal's in Pre-fire season (above) and in post fire season (bottom)

The other parameters related to mammals, birds and reptiles are being analysed and listing is in progress. The parameters with respect to spatial effect of fire and monetary impact of it is being developed.

* Forest Research Institute (FRI), Dehradun

Objective: Economic loss assessment of terrestrial flora due to forest fire on per hectare basis for the respective states

Keeping in view different variable (Forest Type, Forest Density Class, Altitude and Slope), 42 forest fire polygon were selected (32 Moderately Burned Polygon and 10 Low burnt Polygon) for study.

For phytosociological survey laid out plots size $10M \times 10M$, $5M \times 5 M$ and $1M \times 1M$ for Trees, Shrubs and herbs layers respectively. Collected dead twigs, litter, and diameter for Tree Carbon pool while entire plant for shrubs and Herbs have been harvested. Collected soils samples from different burnt and unburnt polygons areas for bulk density and carbon pool.

Field survey have been conducted to collect vegetation and carbon pool data from all burnt and unburnt polygons (ID 1552, ID 4007, ID 386, ID 4002, ID 336, ID 397, ID 548, ID 367, ID 1783, ID 2201, ID 4603, ID 1238, ID 2179, ID 2045, ID 2041, ID 2374, ID2655, ID1008, ID 1020, in different Forest Types of Uttarakhand viz. Himalayan Moist Temperate Forests and Subtropical Pine Forests, Tropical Moist Deciduous Forest, Tropical Dry Deciduous Forest, at Haridwar Forest Division, Rajaji National Park, Binsar Wildlife Sanctuary, Almora Forest Division, Civil Soyam Almora, Nainital Forest Division, Tarai West Forest Division, Haldwani Forest Division, Tons Forest Division, Chakrata forest Division, Tehri Forest Division, Bageshwar Forest Division, Badrinath Forest Division, Kedarnath Wildlife Sanctuary (Annexure III).

Poly 2045- Unburnt (Sub Tropical Pine Forests): MB Binsar Wildlife Sanctuary Division: Dhaulchina Beat (Binsar North)

Fig. 14 Pre-monsoon

Fig. 15 Post-monsoon

Poly 2045-Burnt (Sub Tropical Pine Forests): MB Binsar Wildlife Sanctuary Division: Dhaulchina Beat (Binsar North)

Fig. 16 Pre-monsoon

Fig. 17 Post-monsoon

- The all 42 polygon covered for study. Out of which pre and post mansoon data have been collected for 35 polygon only 7 polygon left for premansoon data.
- The Phytosociological data have been collected from different burnt areas and adjoining unburnt areas. The data analysis of different diversity indices (Importance Value Index (IVI), Shannon-Wiener index (H") and Buza and Gibso's evenness index) are in under progress.
- Rare, endangered and threatened category species (RET) have also been identified referring to the Red Data Book of Botanical Survey of India, IUCN Red data list as well other published records.
- The preparation of listing of Cryptogamic flora (Bryophytes and Lichens are also under preparation for all sites.
- The list of invasive species (if any) are also r prepared for all sites.
- Lab analysis: For 5 Carbon pool dead twigs, litter were collected, and diameter for Tree were measured while for shrub and herb entire plant have been harvested. Collected soils samples from different burnt and unburnt polygons areas for bulk density and organic carbon.

Fig. 18 Bryophyte Diversity in different sites

Fig. 19 Lichen Diversity in different sites

* Tropical Forest Research Institute (TFRI), Jabalpur

Objective : Economic loss assessment of terrestrial flora due to forest fire on per hectare basis for the respective states

Status of Survey Sites:

Primary baseline data on Terrestrial floral diversity was collected through extensive field surveys in the study area during pre-monsoon and post-monsoon season using stratified sampling with GPS locations. The quadrate nested method was used for vegetation sampling for trees, shrubs, and Herbs. The phytosociological data for trees and shrubs were collected from random quadrates of 10 m ×10 m and 5 m × 5 m size. Random quadrats of 1 m × 1 m size were laid for the study of herbaceous flora. Status of the field survey for identification of flora and sample collection for carbon stock assessment in 5 carbon pools as stated below Table 1.

Season	Completed sites	Yet be completed sites	Total sites
Pre-Monsoon	33	16	49
Post-Monsoon	16	33	49
Total	49	49	98

Table 1: Status of survey sites

16 in-completed sites of pre-monsoon season could not be covered due to prevailing lockdown of COVID-19.

Fig. 20 Field survey in the study area during pre-monsoon and post-monsoon season

A. Sample Collection (Litter, Deadwood, Herb, and Shrub):

Samples of Litter, Dead Wood, Herb, and Shrub were collected in the pre-monsoon season for all visited sites and further processed under the laboratory for moisture content analysis. Each site consists of two areas such as fire and control for which we have collected minimum 5 random samples from each area. Batch-wise, litter, dead wood, herb, and shrub samples were kept in an oven and after every three days weighing have been done until constant weight is attained. The register is maintained to record the fresh weight of all samples and their consequent dry weights. Status of samples collection and analysis of collected samples have been shown in the table no. 2 and 3 respectively.

Table 2:	Status	of	Sample	Collection
			-	

Season	Samples collected	Samples collected Samples to be					
(Pre-Monsoon)	Ĩ	collected					
Litter	33	16	49				
Dead Wood	33	16	49				
Herb	33	16	49				
Shrub	33	16	49				

Season	Samples analysed (till sept.	Samples to be	Total
(Pre-Monsoon)	end)	analysed	
Litter	22	11	33
Dead Wood	15	18	33
Herb	21	12	33
Shrub	16	17	33

Table 3: Status of sample analysis

B. Soil samples analysis (Bulk Density & % Organic Carbon):

Soil samples collected from both control and fire sites were brought to the TFRI laboratory for further analysis. These samples were first dried by keeping in an oven until dry and constant weight achieved and calculated bulk density, second, the sample is put through a sieve to obtain well uniform particle size later on organic carbon was determined using the Walkley-Black method. As of now, total 76 (38 sites \times 2 classes (fire and non-fire/control) samples have been collected (Table-4). However, 71 soil samples have been analysed for the bulk density and % organic carbon while the remaining samples are in under process. The result of the analysed samples showed in table (Annexure- IV). Based on the result, it was observed that most of the samples show high carbon content as per the standard rating chart. Percent organic carbon of samples observed within the range of 0.08%-2.92%.

Sampling Season	Completed	To be completed	Total
Pre-Monsoon	38	11	49

C. Identification of plants:

During the field survey, the number of plants of different species in each quadrate was identified and counted while unidentified plants were collected and brought to TFRI. Identification and nomenclature of plants have been done by using regional and state floras and also some of the plants identified by using online websites such as *Flowers of India*, *India Biodiversity Portal, Kew Herbarium*. For accepted names, *the plant list* website is checked regularly.

Fig. 21 Habit-wise Species Diversity

After correct identification, plant data is entered into an excel sheet and unique species are extracted. As far now a total of 202 unique plant species are observed, out of which 90, 15, 24, and 73 are Trees, Climbers, Shrubs, and Herbs respectively (Annexure- V).

Fig. 22 Flora observed during the site visit a: *Strobilanthes callosa, b: Bidens biternata, c: Desmodium heterocarpon, d: Oldenlandia ovatifolia*

Constraints:

Since the field work for collection of data of pre-monsoon period couldn't be undertaken by some institutes due to Covid restrictions and in some cases the pre-monsoon data shall be collected during Jan-Feb, 2022, to complete the study, the extension of the project would be required to complete the field activities followed by analysis of data and preparation of composite report for submission to the MoEF&CC.

Annexure-I

S. No.	Species	Family
1.	Aerisema serratum (Thunberg) Schott *	Araceae
2.	Ageratum conyzoides L. *	Asteraceae
3.	Agrimonia japonica (Miq.) Koidz. *	Rosaceae
4.	Ajuga bracteosa (DC.) *	Geraniaceae
5.	Anaphalis adnata Wall. ex DC. *	Asteraceae
6.	Anaphalis aristata (DC.) *	Asteraceae
7.	Anaphalis contorta (D. Don) Hook. f.	Asteraceae
8.	Apluda mutica L.	Poaceae
9.	Arundinella nepalensis Trin.	Poaceae
10.	Arundinella prunella	Poaceae
11.	Arundinella pumila Hochst.ex A.Rich.	Poaceae
12.	Bergenia ciliata Sternb. *	Saxifragaceae
13.	Bidens pilosa L. *	Asteraceae
14.	Cassia mimosoides DC. *	Fabaceae
15.	Cirsium arvense (L.) Scop.	Asteraceae
16.	Conyza sumatrensis (Retz.) E. Walker*	Asteraceae
17.	Cynodon dactylon Linn. *	Poaceae
18.	Cynoglossum furcatum Wall. *	Boraginaceae
19.	Cyperus rotundus L.	Cyperaceae
20.	Desmodium microphyllum (Thunb.) DC. *	Fabaceae
21.	Desmodium trifolium (Labill.) G. Don*	Fabaceae
22.	Dioscorea deltoidea Wall. ex Griseb.	Dioscoreaceae
23.	Erigeron canadensis L.	Asteraceae
24.	Erigeron sumatrensis Retz.	Asteraceae
25.	Euphorbia hirta L. *	Euphorbiaceae
26.	Euphorbia prolifera Buch. Ham. ex D. Don*	Euphorbiaceae
27.	Gallium aprine L. *	Rubiaceae
28.	Gallium rotundifolium*	Rubiaceae
29.	Geranium wallichianum D. Don ex Sweet*	Geraniaceae
30.	Gomphrena celosioides Mart. *	Amaranthaceae
31.	Gonostegia hirta (Blume) Miq. *	Urticaceae
32.	Hedychium spicatum BuchHam. ex Sm. *	Zingiberaceae
33.	Isodon japonicus (Burm. f.) H. Hara	Lamiaceae
34.	Justicia procumbens L.	Acanthaceae
35.	Lactuca serriola*	
36.	Lespedeza cuneata (Dum. Cours.) G. Don	Fabaceae
37.	Leucas lanata Baker*	Lamiaceae
38.	Micromeria biflora (BuchHam. ex D. Don) Benth. *	Lamiaceae
39.	Miscanthus nepalensis (Trin.) Hack.	Poaceae

List of herb species recorded in Uttarakhand

40.	Ocimum tenuiflorum Burm. f.	Lamiaceae
41.	Osbeckia stellata Wall. ex C.B. Clarke*	Melastomataceae
42.	Oxalis corniculata R. Knuth*	Oxalidaceae
43.	Panicum verticillatum L.	Poaceae
44.	Persicaria capitata (BuchHam. ex D. Don) H. Gross*	Polygonaceae
45.	Polygala elongata Klein ex Willd.	Polygalaceae
46.	Praxelis clematidea R.M. King & H. Rob.	Asteraceae
47.	Setaria parviflora (Poir.) Kerguelen	Poaceae
48.	Siegesbeckia orientalis L. *	Asteraceae
49.	Thymus serpyllum*	Lamiaceae
50.	Trichodesma indicum (L.) Lehm. *	Boraginaceae
51.	Urginia indica*	Liliaceae
52.	Valeriana wallichii DC.	Caprifoliaceae
53.	Viola spp Wall. ex Ging.	Violaceae
54.	Vitis vinifera L.	Vitaceae

*MAPs those are used for plant parts and have economic values.

Annexure-II

S.No.	Species Name	Family
1.	Aechmanthera gossypina (Wall.) Nees*	Acanthaceae
2.	Barleria cristata Roxb. *	Acanthaceae
3.	Berberis aristata DC. *+	Berberidaceae
4.	Carissa spinarum L.	Apocynaceae
5.	Clerodendrum infortunatum L. *	Lamiaceae
6.	Colebrookea oppositifolia Lodd. *	Lamiaceae
7.	Coriaria nepalensis Wall.	Coriariaceae
8.	Dendrocalamus strictus (Roxb.) Nees	Poaceae
9.	Dioscorea floribunda M. Martens & Galeotti	Dioscoreaceae
10.	Eupatorium odoratum L.	Asteraceae
11.	Euphorbia royleana Boiss.	Euphorbiaceae
12.	Flemingia macrophylla Bold. *	Fabaceae
13.	Flemingia strobilifera (L.) W.T. Aiton	Fabaceae
14.	Glochidion velutinum Wight	Phyllanthaceae
15.	Helicteres isora C. Presl*	Malvaceae
16.	<i>Himalrandia tetrasperma</i> (Wall. ex Roxb.) T. Yamaz. *	Rubiaceae
17.	Indigofera tinctoria L. *	Fabaceae
18.	Inula cappa (BuchHam. ex D. Don) DC. *	Asteraceae
19.	Lantana camara L. *	Verbenaceae
20.	Laptodermis lanceolata	Rubiaceae
21.	Lespedeza capitata Michx.	Fabaceae
22.	Litsea japonica Mirb.	Lauraceae
23.	Maesa indica Hook. f.	Primulaceae
24.	Murraya koenigii (L.) Spreng. *+	Rutaceae
25.	Myrsine africana L. *	Primulaceae
26.	Phoenix dactylifera L.	Arecaceae
27.	Phyllanthus amarus Schumach. & Thonn.	Phyllanthaceae
28.	Plectranthus lanuginosus (Hochst. ex Benth.) Agnew*	Lamiaceae
29.	Pyracantha crenulata M. Roem. *	Rosaceae
30.	Rhus parviflora Roxb. *	Anacardiaceae
31.	Rosa acicularis Lindl.	Rosaceae
32.	Rubus ellipticus Lindl. *+	Rosaceae
33.	Solanum aculeatissimum Lindl. *	Solanaceae
34.	Symplocos nairii A.N. Henry	Symplocaceae
35.	<i>Teucrium quadrifarium</i> BuchHam. ex D. Don	Lamiaceae
36.	Thalictrum L.	Ranunculaceae
37.	Urena labata L. *	Malvaceae

List of Shrub species recorded in Uttarakhand

38.	Woodfordia fruticosa (L.) Kurz*	Lythraceae
39.	Ziziphus Nummularia*+	Rhamnaceae
40.	Reinwardtia indica Dumort.	Linaceae
41.	Artemisia nilagirica (Cl.)	Asteraceae
	Pamp. *	
42.	Asparagus racemosus Willd. *	Asparagaceae

Shrubs having economic importance of both wild edible (+) and MAPs (*).

Dolni burnt Infiltration rate (cm/hr) C Time (hr) Infiltration rate (cm/hr) ⁶ 01 ⁵ Dolni unburnt **** Time (hr) Infiltration rate (cm/hr) Usri burnt • • Time (hr) Infiltration rate (cm/hr) Usri unburnt

Ò

Time (hr)

INFILTRATION CHARACTERISTICS OBSERVED DURING FIELD INVESTIGATIONS (A) Infiltration characteristics at the selected burnt & unburnt plots in Uttarakhand

(B) Infiltration characteristics at the selected burnt & unburnt plots in Uttarakhand

Cummulative time (min)

0 + 0

Annexure IV

Burned Polygon Covered (Till November 15, 2021)

Sl. No.	POLY _ID	Forest Type Group	SEVER ITY	AREA	FCM	ALTIT UDE	SLOP E	ASPE CT	DISTRICT	DIVISION	BLOCK	BEAT	FOREST_BL O	COMP T_NO	longitude	latitude	Date for Survey
1.	1552	Tropical Dry Deciduous Forests	Low Burnt	42.80	MDF	0-900	0-3	South	HARIDWA R	HARDWAR FOREST DIVISION	CHIRIYAPUR RANGE	KOTAWA LI BEAT	KOTAWALI	10	78 ⁰ 18' 46.505" E	29º48' 19.676" N	05.12.2020
2.	4007	Sub- Tropical Pine Forests	Low Burnt	202.4	MDF	900- 1800	18-36	North	DEHRAD UN	CHAKRATA FOREST DIVISION	BAWAR RANGE	DARAGA D BEAT	DARAGAD	0	77º 50' 50.844" E	30º 51' 49.153" N	02.12.2020
3.	386	Sub tropical Pine Forests	Low Burnt	9.251	MDF	0-900	18-36	West	DEHRAD UN	CIVIL & SOYAM KALSI DIVISION	LANGHA RANGE	BATOLI-II BEAT	BATOLI BLOCK	5	77º 56' 41.129" E	30º 27' 16.965" N	04.12.2020
4.	4002	Sub Tropical Pine Forests	Low Burnt	537.1	MDF	900- 1800	18-36	South	UTTARKA SHI	TONS FOREST DIVISION	PUROLA RANGE	PUROLA BEAT	PUROLA	0	78 ⁰ 4' 26.879" E	30º 54' 5.968" N	03.12.2020
5.	336	Himalayan Moist Temperate Forests	Moderat ely Burnt	105.04	MDF	900- 1800	18-36	North	TEHRI	TEHRI H FOREST DIVISION	Balganga RANGE	Syansu	Jhatuliya	Jhatuli ya	78º 22' 15.605" E	30° 29'472.50 2" N	19.10.2020
6.	397	Himalayan Moist Temperate Forests	Moderat ely Burnt	11.04	Scrub	900- 1800	18-36	North	TEHRI	TEHRI H FOREST DIVISION	TEHRI RANGE	Nailbagi BEAT	Devtadanada	Devtad anada	78º 24' 58.015" E	30º 27' 18.711" N	18.10.2020
7.	548	Sub Tropical Pine Forests	Moderat ely Burnt	15.76	MDF	900- 1800	18-36	South	Tehri	TEHRI FOREST DIVISION	Tehri RANGE	Maniyar Beat	Maniyar	9	78 ⁰ 24' 47.699" E	30º 21' 55.652" N	17.10.2020
8.	367	Himalayan Moist Temperate Forests	Moderat ely Burnt	8.6	MDF	900- 1800	18-36	East	TEHRI	TEHRI H FOREST DIVISION	Balganga RANGE	Naolbagi Beat	Argad Beat	1	78º 36' 31.352" E	30º 29' 2.953" N	20.10.2020
9.	1783	Sub Tropical Pine	Moderat ely Burnt	99.50	MDF	900- 1800	11-18	South	ALMORA	ALMORA FOREST DIVISION	ALMORA RANGE	GANANA TH CENTRAL BEAT	GANANATH	11	79 ⁰ 40' 11.121" E	29 ⁰ 45' 43.611" N	21.01.2021

		Forests															
10.	2201	Sub Tropical Pine Forests	Moderat ely Burnt	19.99	MDF	2200- 2500	11-18	East	ALMORA	ALMORA FOREST DIVISION	RANIKHET RANGE	GANIADE OLI BEAT	GANIADEOL I	5	79 ⁰ 25' 4.289" E	29 ⁰ 37' 24.238" N	23.01.2021
11.	4603	Sub Tropical Pine Forests	Moderat ely Burnt	391.27 1	MDF	900- 1800	11-18	South	ALMORA	ALMORA FOREST DIVISION	SOMESHWAR RANGE	PUNARKO T BEAT	PUNARKOT	7	79 ⁰ 35' 51.256" E	29 ⁰ 42' 3.441" N	22.01.2021
12.	1238	Sub Tropical Pine Forests	Moderat ely Burnt	138.9	MDF	900- 1800	18-36	North	ALMORA	ALMORA FOREST DIVISION	JAURASI RANGE	NAGAR BEAT	NAGAR	7	79º 19' 26.797" E	29º 54' 1.084" N	24.01.2021
13.	2179	Sub Tropical Pine Forests	Moderat ely Burnt	10.37	MDF	1800- 2200	18-36	North	ALMORA	ALMORA FOREST DIVISION	ALMORA RANGE	BADECHI NA BEAT	PHARKANA ULI	1	79º 44' 44.937" E	29º 38' 4.057" N	20.01.2021
14.	2045	Sub Tropical Pine Forests	Moderat ely Burnt	9.9941 0	VDF	900- 1800	18-36	West	ALMORA	BINSAR WILDLIFE SANCTUARY DIVISION	BINSAR WILDLIFE SANCTUARY RANGE	DHAULC HINA BEAT	BINSAR NORTH	4	79º 48' 9.708" E	29º 41' 7.735" N	25.01.2021
15.	2041	Sub Tropical Pine Forests	Moderat ely Burnt	261.23	MDF	900- 1800	18-36	North	ALMORA	CIVIL SOYAM ALMORA DIVISION	KANARICHINA RANGE	CHARCH ALI BEAT	PANUWANA ULA_EAST	18	79º 54' 28.466" E	29º 40' 56.511" N	26.01.2021
16.	2374	Sub Tropical Pine Forests	Moderat ely Burnt	15.05	OF	1800- 2200	11-18	East	NAINITAL	NAINITAL FOREST DIVISION	NORTH GOLA RANGE	KAPLESH WAR BEAT	KAPLESHW AR BLOCK	6	79 ⁰ 39' 8.091" E	29º 31' 10.753" N	28.01.2021
17.	2655	TOF/Planta tions	Low Burnt	36.84	MDF	0-900	0-3	South	NAINITAL	TARAI WEST DIVISION	SOUTH JASPUR RANGE	TUMARIA BEAT	JASPUR BLOCK	39	78 ⁰ 55'45.193 " E	29 ⁰ 22' 2.906" N	30.01.2021
18.	1008	Tropical Moist Deciduous Forests	Low Burnt	45.00	MDF	0-900	0-3	South	HARIDWA R	RAJAJI NATIONAL PARK DIVISION	HARIDWAR RANGE	KHARKH ARI NORTH BEAT	KHARKHARI BLOCK	0	78º 10' 1.027" E	29 ⁰ 59' 12.042" N	23.12.2020

19.	1020	Tropical Dry Deciduous Forests	Low Burnt	331.3	MDF	0-900	11-18	South	HARIDWA R	RAJAJI NATIONAL PARK DIVISION	HARIDWAR RANGE	RANIPUR EAST BEAT	RANIPUR BLOCK	0	78º 8' 36.240" E	29º57' 35.779" N	22.12.2020
20.	1430	Himalayan Moist Temparate Forest	Moderat e burnt	26.154	VDF	900- 1800	18-36	West	PITHORA GARH	PITHORAGAR H FOREST DIVISION	DIDIHAT RANGE	NAWLAR A	JARAPANI	1	80°10'3.6 94'' E	29°51'50. 855" N	20.02.2021
21.	1867	Sub Tropical Pine Forests	Moderat e burnt	29.22	MDF	1800- 2200	5-11	West	PITHORA GARH	PITHORAGAR H FOREST DIVISION	DIDIHAT RANGE	OGLA BEAT	DEVCHULA BLOCK	1	80°17'5.2 15'' E	29°45'3.1 82" N	23.02.2021
22.	4446	Sub Tropical Pine Forests	Moderat e burnt	225.8	MDF	900- 1800	18-36	South	PITHORA GARH	PITHORAGAR H FOREST DIVISION	ASKOT RANGE	SOUTH DAPHIA BEAT	DAPHIA BLOCK	3	80°21'19. 271" E	29°52'7.7 55" N	22.02.2021
23.	1518	Sub Tropical Pine Forests	Modera e Burnt	26.69	MDF	1800- 2200	11-18	West	BAGESH WAR	BAGESHWAR DIVISION	BAGESHWAR RANGE	CHHATIN A BEAT	CHHATINA BLOCK	1	79°47' 41.155" E	29°50' 29.006" N	13.03.2021
24.	1265	Sub Tropical Pine Forests	Moderat ely Burnt	223.9	MDF	900- 1800	18-36	West	BAGESH WAR	BAGESHWAR DIVISION	GARHKHET RANGE	GARHKH ET-I BEAT	KHABDOLI_ SOUTH	13	79°41' 45.883" E	29° 53' 45.352" N	14.03.2021
25.	1293	Sub Tropical Pine Forests	Moderat ely Burnt	232.8	MDF	900- 1800	18-36	South	BAGESH WAR	BAGESHWAR DIVISION	DHARAMGARH RANGE	PUNGAR-I BEAT	PUNGAR	4	79°50' 44.327" E	29°52' 52.520" N	17.03.2021
26.	1313	Sub Tropical Pine Forests	Moderat ely Burnt	104.73 4	MDF	1800- 2200	18-36	West	BAGESH WAR	BAGESHWAR DIVISION	BAGESHWAR RANGE	KHABDO LI_SOUTH BEAT	KHABDOLI_ SOUTH	8	79°44' 7.012" E	29°52' 59.338" N	16.03.2021
27.	1388	Sub Tropical Pine Forests	Moderat ely Burnt	185.68 9	VDF	900- 1800	18-36	North	BAGESH WAR	BAGESHWAR DIVISION	BAIJNATH RANGE	SHIKHAR KOT-III BEAT	AKUWA BINASARI/S HIKHARKOT	0	79°41' 40.723" E	29°52' 5.397" N	19.03.2021
28.	4452	Sub Tropical Pine Forests	Moderat ely Burnt	73.390	MDF	900- 1800	18-36	South	BAGESH WAR	BAGESHWAR DIVISION	BAGESHWAR RANGE	CHHATIN A BEAT	PHALYANTI	1	79°47' 23.668" E	29°51' 43.070" N	18.03.2021
29.	4507	Sub Tropical Pine Forests	Moderat ely Burnt	7.1192	VDF	900- 1800	18-36	North	BAGESH WAR	BAGESHWAR DIVISION	BAGESHWAR RANGE	JAULKAN DE BEAT	JAULKANDE	3	79°45' 44.887" E	29°49' 6.926" N	15.03.2021
30.	534	Himalayan Moist Temparate Forest	Moderat ely Burnt	7.1749 7	OF	900- 1800	18-36	East	CHAMOLI	KEDARNATH WILDLIFE DIVISION	GOPESHWAR RANGE	KATHUD BEAT	TRISHULA BLOCK I	5	79° 18' 37.737" E	30° 23' 10.486" N	15.04.2021
31.	552	Himalayan Moist Temparate	Moderat ely Burnt	319.62	OF	900- 1800	18-36	South	CHAMOLI	KEDARNATH WILDLIFE DIVISION	NAGNATH RANGE	BAMNAT H I BEAT	TRISHULA BLOCK II	17	⁷⁹ т ^{°14'} 23.762" Е	30⊤°21' 59.419" N	14.04.2021

		Forest															
32.	4344	Himalayan Moist Temparate Forest	Moderat ely Burnt	281.89	MDF	900- 1800	18-36	North	CHAMOLI	BADRINATH FOREST DIVISION	PINDAR WEST RANGE	AMSOR BEAT	NALGAON BLOCK	8	79°21' 7.816" E	30° 9' 36.743" N	16.04.2021
33.	4204	Himalayan Moist Temparate Forest	Low Burnt	214.52	MDF	1800- 2200	18-36	West	CHAMOLI	BADRINATH FOREST DIVISION	NANDPRAYAG RANGE	SIRTOLI BEAT	SUNALA BLOCK	1	79°18' 45.663" E	30°18' 35.207" N	12.04.2021
34.	4255	Himalayan Moist Temparate Forest	Low Burnt	883.12	MDF	1800- 2200	18-36	North	CHAMOLI	BADRINATH FOREST DIVISION	NANDPRAYAG RANGE	SAINJ BEAT	KUNJAKOT BLOCK III	7	79°19' 3.551" E	30°16' 6.806" N	13.04.2021
35.	2090	Himalayan Moist Temparate Forest	Moderat ely Burnt	18.47	MDF	0-900	11-18	West	PITHORA GARH	PITHORAGAR H FOREST DIVISION	GANGOLIHAT RANGE	Lamkeshwa r Beat	NAG BLOCK	1	80°1' 58.924" E	29° 40' 20.295" N	17.04.2021
36.	3484	Tropical Moist Deciduous Forests	Moderat ely Burnt	27.479 2	Dand a Range	VDF	0-900	11-18	North	CHAMPAWA T	HALDWANI FOREST DIVISION	DANDA RANGE	DURGAPIPA L BEAT	DURG APIPA L	4	79 _T 53' 48.073" E	29 _T 8' 36.115" N
37.	3690	Tropical Moist Deciduous Forests	Moderat ely Burnt	86.059 2	Hald wani Range	MDF	0-900	0-3	South	NAINITAL	TARAI CENTRAL DIVISION	HALDWA NI RANGE	TANDA CENTER BEAT	TAND A BLOC K	109	79 _T 26' 53.546" E	29 _⊤ 6' 7.058" N
38.	3625	Tropical Moist Deciduous Forests	Moderat ely Burnt	56 761	Jaulas al Range	VDF	0-900	18-36	West	NAINITAL	HALDWANI FOREST DIVISION	JAULASA L RANGE	HATGADH BEAT	HATG ADH	8	79 _T 48' 14 482" E	29 _⊤ 7' 14 384" N
39.	3300	Tropical Moist Deciduous Forests	Moderat ely Burnt	5.8800	Nand haur Range	VDF	0-900	18-36	North	NAINITAL	HALDWANI FOREST DIVISION	NANDHA UR RANGE	RATARAO BEAT	RATA RAO	4	79 _T 45' 18.295" E	29 _T 10' 41.157" N
40.	2994	ToF/	Moderat ely	102.9	Kilpu ra	MDE	0.000	0.2	South	UDHAMSING	TARAI EAST FOREST	KILPURA	WEST KILPURA-I	WEST KILPU RA BLOC	51	79 	29 _T 1'
41.	2655	ToF/ Plantations	Low	36.84	South Jaspur Range	MDF	0-900	0-3	South	NAINITAL	TARAI WEST DIVISION	SOUTH JASPUR RANGE	TUMARIA	K JASPU R BLOC K	39	78 _T 55' 45.193" E	29 _T 22' 2.906" N
42.	3700	ToF/ Plantations	Low Burnt	4.2330	Kisha npur Range	MDF	0-900	0-3	East	NAINITAL	TARAI EAST FOREST DIVISION	KISHANP UR RANGE	KISHANPUR SOUTH BEAT	KISHA NPUR BLOC K	8	79 _Т 36' 10.083" Е	29 _T 6' 38.254" N

Annexure- V

Soil Sample Analysis

Sr.No.	Polygon	Control/Fire	Dry weight of	Volume	Bulk	% Organic
	ID		soil (gm)	(cm^3)	Density	Carbon
					(gm/cm3)	
1	1312	Control	313	240	1.3	0.81
2	1316	Control	358	240	1.49	0.72
3	1316	Fire	321	240	1.34	0.91
4	1357	Control	350	240	1.46	0.34
5	1357	Fire	284	240	1.18	1.55
6	1358	Control	306	240	1.28	1.06
7	1358	Fire	330	240	1.38	0.73
8	1443	Fire	333	240	1.39	0.59
9	1443	Control	324	240	1.35	0.44
10	4524	Fire	230.7	220	1.05	2.21
11	4524	Control	233.8	220	1.06	1.52
12	6534	Control	259	240	1.08	1.27
13	6534	Fire	258	240	1.08	1.71
14	6865	Control	300	240	1.25	1.51
15	6993	Fire	338	220	1.54	1.83
16	6993	Control	252	220	1.15	2.54
17	7596	Fire	396	240	1.65	0.59
18	7596	Control	418	240	1.74	1.24
19	9169	Fire	330.8	240	1.38	0.95
20	9169	Control	342.3	240	1.43	1.16
21	10369	Fire	329.7	220	1.5	0.47
22	10369	Control	319.4	220	1.45	1.27
23	11001	Control	330	220	1.5	1.75
24	11001	Fire	338	220	1.54	1.13
25	11546	Control	322	220	1.46	0.73
26	11546	Fire	306	220	1.39	1.39
27	11563	Fire	350	220	1.59	0.75
28	11563	Control	346	220	1.57	0.64
29	11791	Fire	350	220	1.59	0.79
30	11791	Control	280	220	1.27	0.69
31	11995	Fire	390	220	1.77	0.58
32	11995	Control	374	220	1.7	0.43
33	12459	Fire	362	220	1.65	1.75

34	12459	Control	548	220	2.49	0.88
35	12508	Fire	432.7	220	1.97	0.49
36	12508	Control	345.7	220	1.57	0.95
37	12563	Fire	419.3	220	1.91	0.44
38	12563	Control	349.5	220	1.59	1.85
39	12628	Fire	315.3	220	1.43	0.74
40	12628	Control	407.6	220	1.85	0.96
41	14057	Fire	330	220	1.5	0.81
42	14057	Control	358	220	1.63	2
43	14676	Fire	336	240	1.4	0.76
44	14676	Control	310	240	1.29	0.34
45	14683	Control	329	240	1.37	0.34
46	14683	Fire	317	240	1.32	0.81
47	15203	Fire	235.5	220	1.07	2.92
48	15203	Control	228.3	220	1.04	0.08
49	15522	Fire	253	240	1.05	0.95
50	15762	control	262	240	1.09	1.77
51	16068	Control	355	240	1.48	0.76
52	16068	Fire	266	240	1.11	1.25
53	16181	Fire	324	240	1.35	0.69
54	16181	Control	335	240	1.4	1.69
55	16311	Fire	365	240	1.52	0.31
56	16455	Fire	327.4	220	1.49	1.03
57	16455	Control	330.6	220	1.5	1.68
58	16470	Fire	324.1	220	1.47	1.22
59	16470	Control	341	220	1.55	0.54
60	16529	Fire	414	220	1.88	0.65
61	16529	Control	394	220	1.79	1.95
62	16581	Fire	360	220	1.64	0.44
63	16581	Control	325	220	1.48	0.9
64	16627	Control	336	220	1.53	0.67
65	16627	Fire	273	220	1.24	2.7
66	16826	Control	481	220	2.19	1.11
67	16826	Fire	510	220	2.32	1.08
68	16846	Control	349	220	1.59	0.65
69	16846	Fire	295	220	1.34	1.3
70	16860	Fire	400	220	1.82	1.41
71	16860	Control	350	220	1.59	1.12

Annexure- VI

Unique Species List

Sr. no.	Species Name	Habit
1	Acacia catechu	Tree
2	Acacia Chandra	Tree
3	Acacia lanceolata	Tree
4	Acacia leucophloea	Tree
5	Acacia nilotica	Tree
6	Acalypha malabarica	Herb
7	Achyranthes aspera	Herb
8	Acmella ciliate	Herb
9	Adina cordifolia	Tree
10	Aegle marmelos	Tree
11	Ageratum conyzoides	Herb
12	Ailanthus excelsa	Tree
13	Albizia amara	Tree
14	Albizia lebbeck	Tree
15	Albizia odoratissima	Tree
16	Alternanthera sessilis	Herb
17	Alysicarpus ovalifolius	Herb
18	Alysicarpus vaginalis	Herb
19	Andrographis paniculata	Herb
20	Anogeissus latifolia	Tree
21	Argemone Mexicana	Herb
22	Aristida sp.	Herb
23	Asparagus racemosus	Climber
24	Azadirachta indica	Tree
25	Azanza lampas	Shrub
26	Balanites aegyptiaca	Tree
27	Bambusa arundinacea	Tree
28	Barleria montana	Herb
29	Barleria prionitis	Herb
30	Bauhinia malabarica	Tree
31	Bauhinia purpurea	Tree
32	Bauhinia racemosa	Tree
33	Bauhinia vahlii	Climber
34	Bauhinia variegata	Tree
35	Biophytum sensitivum	Herb
36	Blumea glomerata	Herb
37	Blumea lacera	Herb
38	Bombax ceiba	Tree
39	Boswellia serrata	Tree
40	Bridelia retusa	Tree

41	Buchanania cochinchinensis	Tree
42	Butea monosperma	Tree
43	Butea superba	Climber
44	Cajanus scarabaeoides	Climber
45	Calotropis gigantea	Shrub
46	Canscora diffusa	Herb
47	Cardiospermum halicacabum	Climber
48	Careya arborea	Tree
49	Carissa bispinosa	Shrub
50	Carissa carandas	Shrub
51	Carissa spinarum	Shrub
52	Casearia graveolens	Tree
53	Casearia tomentosa	Tree
54	Cassia fistula	Tree
55	Cassine glauca	Tree
56	Catunaregam spinosa	Tree
57	Celastrus paniculatus	Climber
58	Celosia argentea	Herb
59	Centella asiatica	Herb
60	Chloroxylon swietenia	Tree
61	Chromolaena odorata	Shrub
62	Cissampelos pareira	Climber
63	Cleistanthus collinus	Tree
64	Cocculus hirsutus	Climber
65	Cochlospermum religiosum	Tree
66	Colebrookea oppositifolia	Shrub
67	Commelina benghalensis	Herb
68	Corchorus aestuans	Herb
69	Crotalaria albida	Herb
70	Crotalaria calycina	Herb
71	Cryptolepis buchananii	Climber
72	Curculigo orchioides	Herb
73	Curcuma aromatica	Herb
74	Cyanthillium cinereum	Herb
75	Cyclea peltate	Climber
76	Cymbopogon coloratus	Herb
77	Cyperus rotundus	Herb
78	Dalbergia lanceolaria	Tree
79	Dalbergia latifolia	Tree
80	Dalbergia sissoo	Tree
81	Dendrocalamus strictus	Herb
82	Desmodium dichotomum	Herb
83	Desmodium gangeticum	Herb
84	Desmodium oojeinense	Tree
85	Desmodium triflorum	Herb

86	Diospyros melanoxylon	Tree
87	Diospyros montana	Tree
88	Ehretia laevis	Tree
89	Elephantopus scaber	Herb
90	Emilia sonchifolia	Herb
91	Eranthemum roseum	Herb
92	Euphorbia hirta	Herb
93	Euphorbia indica	Herb
94	Evolvulus alsinoides	Herb
95	Evolvulus nummularius	Climber
96	Ficus arnottiana	Tree
97	Ficus benghalensis	Tree
98	Ficus racemose	Tree
99	Flacourtia indica	Tree
100	Flemingia strobilifera	Shrub
101	Gardenia gummifera	Tree
102	Gardenia latifolia	Tree
103	Gardenia resinifera	Tree
104	Garuga pinnata	Tree
105	Gmelina arborea	Tree
106	Grewia asiatica	Tree
107	Grewia flavescens	Shrub
108	Grewia orbiculate	Shrub
109	Grewia tiliifolia	Tree
110	Gymnosporia senegalensis	Shrub
111	Hardwickia binata	Tree
112	Helicteres isora	Shrub
113	Hemidesmus indicus	Climber
114	Hemigraphis latebrosa	Herb
115	Holarrhena pubescens	Tree
116	Holoptelea integrifolia	Tree
117	Hyptis suaveolens	Herb
118	Indigofera linnaei	Herb
119	Ixora parviflora	Shrub
120	Ixora pavetta	Tree
121	Justicia procumbens	Herb
122	Justicia quinqueangularis	Herb
123	Kydia calycina	Tree
124	Lagerstroemia parviflora	Tree
125	Lannea coromandelica	Tree
126	Lantana camara	Shrub
127	Lepidagathis cristata	Herb
128	Madhuca longifolia	Tree
129	Malvastrum coromandelianum	Herb
130	Manilkara hexandra	Tree

131	Mecardonia procumbens	Herb
132	Melastoma malabathricum	Shrub
133	Miliusa tomentosa	Tree
134	Mitragyna parvifolia	Tree
135	Morinda tinctoria	Tree
136	Murdannia simplex	Herb
137	Nelsonia canescens	Herb
138	Nyctanthes arbor-tristis	Tree
139	Oldenlandia corymbose	Herb
140	Oplismenus burmannii	Herb
141	Oroxylum indicum	Tree
142	Oxalis corniculate	Herb
143	Paspalidium flavidum	Herb
144	Phoenix sylvestris	Tree
145	Phyllanthus emblica	Tree
146	Phyllanthus sp.	Herb
147	Phyllanthus reticulatus	Shrub
148	Phyllanthus tenellus	Herb
149	Phyllanthus urinaria	Herb
150	Phyllanthus virgatus	Herb
151	Phyllodium pulchellum	Herb
152	Pimpinella tomentosa	Herb
153	Plumbago zeylanica	Herb
154	Poa cilianesis	Herb
155	Pogostemon benghalensis	Herb
156	Pterocarpus marsupium	Tree
157	Ruellia prostrata	Herb
158	Ruellia tuberosa	Herb
159	Rungia pectinate	Herb
160	Schleichera oleosa	Tree
161	Schrebera swietenioides	Tree
162	Scoparia dulcis	Herb
163	Semecarpus anacardium	Tree
164	Senna tora	Shrub
165	Shorea robusta	Tree
166	Sida acuta	Herb
167	Sida cordifolia	Herb
168	Smilax zeylanica	Climber
169	Solanum violaceum	Shrub
170	Soymida febrifuga	Tree
171	Spatholobus parviflorus	Climber
172	Spermacoce hispida	Herb
173	Spermacoce verticillate	Herb
174	Sterculia urens	Tree
175	Stereospermum chelonoides	Tree

176	Syzygium aromaticum	Tree
177	Syzygium cumini	Tree
178	Tectona grandis	Tree
179	Tephrosia purpurea	Herb
180	Terminalia arjuna	Tree
181	Terminalia bellirica	Tree
182	Terminalia chebula	Tree
183	Terminalia elliptica	Tree
184	Terminalia tomentosa	Tree
185	Themeda triandra	Herb
186	Tridax procumbens	Herb
187	Triumfetta rhomboidea	Shrub
188	Urena lobata	Shrub
189	Ventilago denticulate	Climber
190	Vicoa indica	Herb
191	Vitex negundo	Tree
192	Waltheria indica	Shrub
193	Woodfordia fruticose	Shrub
194	Wrightia arborea	Tree
195	Wrightia tinctoria	Tree
196	Xanthium strumarium	Herb
197	Ziziphus jujuba	Tree
198	Ziziphus mauritiana	Tree
199	Ziziphus nummularia	Shrub
200	Ziziphus oenoplia	Shrub
201	Ziziphus rugosa	Tree
202	Ziziphus xylopyrus	Tree